Solution 2.1.1
| Translate the following English decimal numbers to the base 12 numbers of hruˀovaPō. |
||
| a) 25 | 12(2) + 1 | ˀɪxideˀɪchi |
| b) 36 | 12(3) | ˀɪxiga |
| c) 137 | 12(11)+5 | ˀɪxivoˀujo |
| d) 143 | 12(11)+11 | ˀɪxivoˀovo |
Solution 2.1.2
| Match the base 12 hruˀovaPō numbers with their decimal equivalents. |
||
| 1) ˀɪxiˀolo | 12 + 4 | D) 16 |
| 2) ˀɪxiˀede | 12 + 2 | B) 14 |
| 3) ˀedeˀudode | (12²)2 | C) 288 |
| 4) ˀedeˀudoˀede | 12² + 2 | A) 148 |
Solution 2.1.3
| Convert the base 12 hruˀovaPō number to it's decimal equivalent |
||
| 'ɪxiju'ede | 12(5) + 2 | 62 |
| 'ede'udoga | (12²)3 | 432 |
| 'ɪxitu'ɪki | 12(10) + 6 | 126 |
| 'olo'udo | 12⁴ | 20736 |
Solution 2.1.4
| Fill in the blank with the hruˀovaPō number. hint: this is a logic problem, you should not need to translate numbers to decimal to complete most of this exercise. |
||
| ˀapaˀudoˀolo + ˀapa = ˀapaˀudoˀɪxi --hint: ɪxi-ˀolo = ˀapa | ||
| ˀedeˀudoˀolo - olo = ˀedeˀudo | ||
| ˀemeˀudo * ˀede = ˀemeˀudode --hint: ˀudode from ˀudo and ˀede | ||
| ˀoloˀudopa / ˀapa = ˀoloˀudo --hint: ˀudopa from ˀudo and ˀapa | ||